Home About
Digit Function

Digit Function

Idea

The digit function, $$D_b^n(x)=\left\lfloor\frac{x}{b^n}\right\rfloor-b\left\lfloor\frac{x}{b^{n+1}}\right\rfloor,$$ returns the $n^\text{th}$ digit from the base $b$ expansion of $x$. I.e; $$\sum_{n\in\mathbb{Z}}b^n D_b^n(x)=x.$$ So by $n^\text{th}$ digit, we mean the digit coresponding to the $n^\text{th}$ power of $b$. It is the subject of a lot of my research.

p-adic connection

Without any modification, the digit function yields the $p$-adic expansion for negative integers in base $p$. For example, the 2-adic expansion of $-1$ is $$\dots1111111_2=-1,$$ which corresponds to the fact that $$D_2^n(2)=1,$$ for all $n\in\mathbb{N}$.

Articles referencing here